

- Compatible with Silicon Designs accelerometers
- No additional accelerometer power supply needed
- Automatic and manual calibration routine
 - +/-1G Flip or manually enter from calibration certificate
- Adjustable filters and FFT for data analysis in both real time or post collection
- Three input channels support three 1- axis modules or one 3axis module
- 16 Bit sample rates from 1 to 10,000 samples/second per axis
- Recording feature with playback in multiple speeds
- Available preconfigured if purchased with a new Silicon Designs accelerometer module
- Automatic setup in less than 5 minutes includes bias, scale factor, etc.
- Last configuration stored in memory and available remotely
- Included software features familiar and convenient user interface built on a LabView platform

SPECIFICATIONS

PHYSICAL

5.5" x 4.25" x 1.5" Case Size Weight 275 grams / 9.5 oz. Die Cast Aluminum, Plastic Case Material

OPERATIONAL

25 Pin Female D-Sub Connection **USB Connection** Micro USB (B) Memory Type SD Card, Micro SD w/ Adaptor

Max SD Card Size 32 GB

ENVIRONMENTAL

Operating Temperature 0° C to +55 $^{\circ}$ C (max) Storage Temperature -40°C to +85°C (max) Humidity 0% - 90% Non-condensing

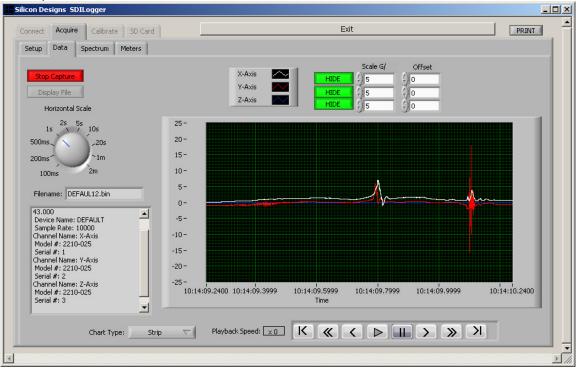
PC REQUIREMENTS

Operating Systems Windows 8, 7, XP **Host Connection** USB2 Type A **Power Supply** Via USB Cable 750 mW Max Power Consumption

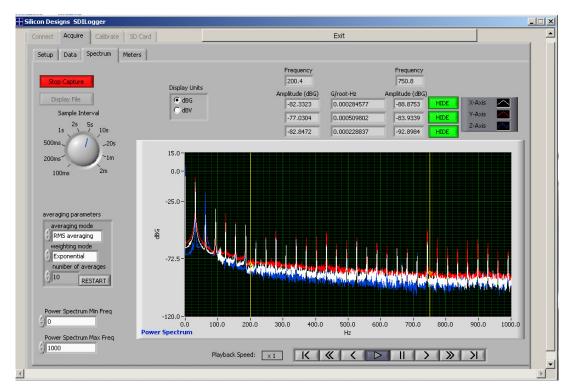
TCP/IP Remote Operation Network Connection Req.

ZERO (DC) TO MEDIUM FREQUENCY APPLICATIONS

ADDITIONAL FEATURES


- Real time data monitoring
- Collect data in G or volts
- Display shows from 100ms to 2 minutes of data
- FFT (Fast Fourier Transform) analysis is an advanced feature usually found on much more expensive DAQ systems
- Independent scale G/Div settings expand or shrink each channel's input for better visibility
- PAUSE, RWD, FWD without interrupting data collection
- Optional offsets provide a staggered display for no
- Independent scale G/Div per channel
- Oscilloscope (Sweep, Scope, Strip) and Volt Meter modes
- Hide or show any or all of the 3 channels
- View data from remote locations on network via TCP/IP
- Optional offset setting per channel
- Export time-stamped data to Excel, MatLab etc.

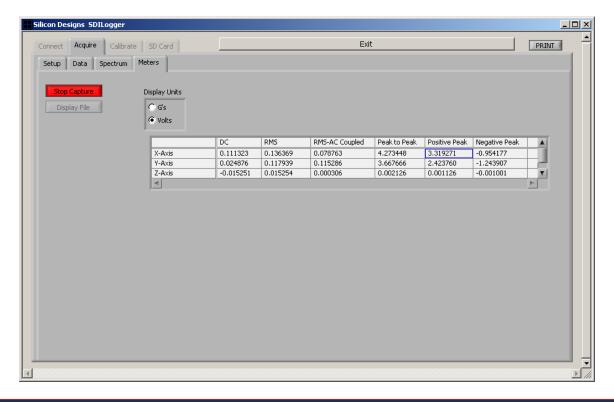
SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE


DATA COLLECTION

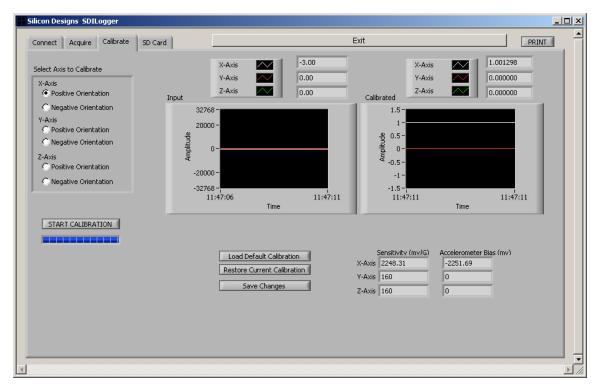
Data can be collected live or recorded for playback later. Modifying the horizontal scale expands or contracts the period of time displayed on the screen from 100ms up to 2 minutes. Each axis is one channel, and these can be hidden or offset (but will still be recorded) as desired.

SPECTRUM (FFT)

SPECTRUM displays the FFT of the data. This is a more advanced feature of the G-logger 33x0. You can analyze the data to see at which frequencies the maximum vibrations are occurring.



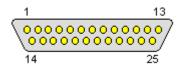
www.silicondesigns.com [page 2] 25-January-2016


PEAK VALUES

The METERS screen provides DC, RMS, and peak values in either Volts or Gs. These values are calculated over the time interval selected by the horizontal scale selected on the Data tab. The values are updated at that same interval as well.

CALIBRATE

The default calibration parameters are supplied automatically, or unit-specific calibration parameters can be manually entered. Manual calibration can be done any time using gravity and performing a simple +/-1G flip.


www.silicondesigns.com

CONNECTOR PIN LAYOUT

	TOP ROW PIN NUMBERS											
1	2	3	4	5	6	7	8	9	10	11	12	13
CH 0 0 Volt	CH 0 AON	CH 1 0 Volt	CH 1 AON	CH 2 0 Volt	CH 2 AON	Х	Х	х	Х	Х	Х	Х
BOTTOM ROW PIN NUMBERS												
14	15	16	17	18	19	9 :	20	21	22	23	24	25
CH 0	CH 0	CH 1	CH 1	CH :	2 CH	2	х	х	х	Х	Х	Х
AOP	8-32 V	AOP	8-32 V	AOI	P 8-32	2 V						

25 Pin D-Sub Connector for Accelerometer Connection

3330 CONNECTION

SDI STANDARD CABLE COLOR CODE

VS: red wire	Power		
GND: black wire	Ground		
AOP: (Output) green wire	Positive output		
AON: (Output) white wire	Negative output		

4-WIRE

VS: red wire	Power
GND: black wire	Ground
AOPX: (Output) green wire	X-Axis positive output
AONX: (Output) white wire	X-Axis negative output
AOPY: (Output) brown wire	Y-Axis positive output
AONY: (Output) orange wire	Y-Axis negative output
AOPZ: (Output) blue wire	Z-Axis positive output
AONZ: (Output) yellow wire	Z-Axis negative output

8-WIRE PIGTAIL

For full descriptions and detailed instructions, see the G-Logger manual.